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The transient amplitude, dynamic stability and steady-state response of a flexible rod of
a high-speed quick-return mechanism are investigated in this paper. The crank drives the
rod by means of a translating/rotating joint at a constant speed. The flexible rod is divided
into two regions. Each region has a time-dependent length and is modelled by the
Timoshenko and Euler beam theories. A special finite element method with time-dependent
shape and Hamilton’s principle is employed to derive the governing equation, which has
time-varying coefficients. By using the Runge–Kutta numerical method, the transient
amplitudes are obtained. The steady-state responses due to harmonic excitation are
determined by the harmonic balance method. Subsequently, Bolotin’s method is used to
solve Mathieu–Hill’s type equation for the dynamic stability analysis. The stable–unstable
boundaries are obtained from the condition that the set of linear homogeneous equations
should have a non-trivial solution.
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1. INTRODUCTION

Traditionally, mechanisms have been designed under the assumption that all members in
a mechanism are rigid bodies. However, when a mechanism operates at a high-speed
condition, a perturbative motion will be observed. There will be some problems in
mechanism when the amplitude of vibration is greater than the allowable limit. Due to
development of high-speed machinery, robots, and aerospace structures, research on the
flexible systems undergoing both gross motion and elastic deformation has become
increasingly important.

There are two general approaches in flexible mechanism analysis. These techniques are:
(i) the coupled non-linear partial differential equations are generated analytically, and then
Galerkin’s method is applied to discretize the system. This approach is applicable to simple
mechanisms only, because of the difficulty in generating the governing equations for a
mechanism with many members; (ii) the mechanism is discretized via a finite element
technique, where the nodal displacements are considered as the generalized co-ordinates
in the analysis.

The response of the elastic connecting rod in a high-speed slider-crank mechanism was
found by Viscomi and Ayre [1] to be dependent upon five parameters: length, mass,
damping, external piston force, and frequency. The transient responses in both transverse
and longitudinal directions were investigated by Chu and Pan [2].
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The Whitworth quick-return mechanism was modified and used for constructing a
high-speed impacting press. Dwivedi [3] presented an approximate expression for the
angular displacement, velocity and acceleration of the mechanism. The quick-return
mechanism was investigated by Beale and Scott [4, 5] focussing on deflection and stability
wherein the rod was considered as an Euler–Bernoulli beam. The equation of motion and
its boundary conditions were obtained by using Hamilton’s principle. Spatial dependence
was suppressed by using Galerkin’s method with time-dependent pinned–pinned
overhanging beam modes. In their following study [6], a large crank case was considered.
However, Galerkin’s approach was too computationally intensive due to the
time-dependent boundary and its complex mode shape.

The finite element discretization approach can be applied to any mechanism. For
example, Bahgat and Willmert [7], Song and Haug [8] and Yang and Sadler [9] employed
the technique in their work on the dynamics of flexible planar mechanisms. To the authors’
knowledge, there is no paper which studies the flexible rod of a quick-return mechanism
by the special finite element method with time-dependent shape functions. Generally, by
using the Euler beam theory to describe the motion of a flexible rod, the previous studies
have neglected the rotary inertia and the shear deformation. In this paper, the Timoshenko
and Euler beam theories are used to simulate the flexible rod of a quick-return mechanism
as shown in Figure 1. The rod is divided into two regions and each region has a
time-dependent length. Hamilton’s principle and the finite element method are employed
to formulate the governing equation of the flexible rod. Here, it is obvious that the
application of the principle is not straightforward, since there is a time-dependent
boundary involved. The results of transient amplitude, steady-state response and
stable–unstable region are obtained and compared.

2. FORMULATION OF EQUATION OF MOTION

2.1.  

The quick-return mechanism consists of a crank driving a flexible rod by means of a
translating/rotating joint. As shown in Figure 1, ei and ej are the unit vectors of the rotating

Figure 1. Quick-return mechanism before deformation.
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Figure 2. Quick-return mechanism with a flexible rod.

frame Ox'y' which rotates with an angular velocity Ft . i and j are the unit vectors of the
fixed frame OXY. x'1 (t) is the current position of the translating/rotating joint. For other
symbols in this figure see the nomenclature in Appendix B.

The following assumptions are made in the derivation of the equation of motion: (1)
The crank is assumed to be rigid and rotates at a constant angular velocity. (2) The rod
is taken to be flexible and is modelled by the Timoshenko and Euler beam theories. (3)
The values A, E, I and r are taken as constants. (4) The translating/rotating joint is treated
as a ‘‘knife edge’’ which is the same as in Beale and Scott [4, 5]. (5) The friction of this
joint is neglected.

Because the translating/rotating joint moves reciprocally along the rod, there is a
time-dependent boundary involved. The total length L of the flexible rod is divided into
two regions as shown in Figure 2. For the finite element analysis, the rod is divided into
Ne elements. Region 1 has m elements while region 2 has n elements. Thus, one has
Ne =m+ n. l1(t) is the element length in region 1 for x'1 (t)E x'EL while l2(t) is the
element length in region 2 for 0 E x'E x'1 (t). The element lengths of the two regions are
respectively

l1(t)= (L− x'1 (t))/m, x'1 (t)E x'EL, l2(t)= x'1 (t)/n , 0E x'E x'1 (t), (1a, b)

which satisfy the relationship

ml1(t)+ nl2(t)=L. (2)

2.2.   

The displacement field of the deformed Timoshenko beam is

u1(x, y, t)= u(x, t)− yc(x, t), u2(x, y, t)= v(x, t), (3)

where u and v represent the axial and transverse displacements of the flexible rod
respectively, and c is the slope of the deflection curve due to bending deformation alone.

In order to assemble the elements and to equate the corresponding co-ordinates, a
transformation of element variable is necessary. In this paper, the rotating co-ordinate
system Ox'y' fixed on the flexible rod is selected to be the reference co-ordinate. Figure
3 shows the ith beam element undergoing gross motion and elastic deformation. The
deformed position vector of an arbitrary point P in the ith element is

R(x, y, t)=Ri(t)ei +(x+ u1)ei + u2ej, (4)
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where vector Ri(t)ei locates the origin o' of the local co-ordinate system o'xy of the ith
beam element. Thus, the length Ri(t) in regions 1 and 2 are respectively

Ri(t)=6nl2(t)+ (i−1)l1(t),
(i−1)l2(t),

i=1, 2, . . . , m;
i=1, 2, . . . , n.

(5)

By differentiating equation (4) with respect to time t, the absolute velocity vector is

Rt(x, y, t)= [Ri
t + ut − yct − vFt ]ei +[(Ri + x+ u− yc)Ft + vt ]ej. (6)

The kinetic energy for the ith element is given by

Ti =
1
2 gVe

rRt · Rt dVe

=
1
2 g

l(t)

0

rA{[Ri
t + ut − vFt ]2 + [(Ri + x+ u)Ft + vt ]2}+ rI[c2

t +F2
tc

2] dx, (7)

where l(t) is used to represent the element length l1(t) in region 1 and the element length
l2(t) in region 2.

The Lagrange linear strains are

exx = ux − ycx , eyy =0, exy = 1
2(vx −c), (8)

where the high order terms 1
2c

2, uxc and yccx are neglected. The strain energy for the ith
element due to bending, axial and shear deformations is

Ui =
1
2 gVe

sijeij dVe =
1
2 g

l(t)

0

{EAu2
x +EIc2

x +KGA(vx −c)2} dx. (9)

The kinetic energy of crank with mass Mc and mass momentum of inertia Jc is

Tcrank = 1
8Mcl2cu� 2 + 1

2Jcu� 2. (10)

Figure 3. The ith beam element undergoing gross motion and elastic deformation.
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Note that the variation of the crank kinetic energy is zero since u� is prescribed. The
Lagrangian function is the kinetic energy minus the potential energy. Hence, it is a function
of the unknown deformations u, v and c which are functions of position x and time t.
It is seen from the kinetic energy (7) and the strain energy (9) that the effect of the
time-dependent length is included in the Lagrangian function.

The usual approach in the finite element method is to assume each unknown
deformation w(x, t) to be approximated by a finite series in the following form

w(x, t)= s
Ne +1

i=1

Ni (x, l(t))qi (t), (11)

where Ne +1 is the total number of nodal points, qi (t) represents the nodal displacement,
and Ni (x, l(t)) is a function of x and l(t). The finite series (11) permits the evaluations of
the integrals in equations (7) and (9), and the Lagrangian becomes a function of the
unknown nodal displacement qi (t).

To provide continuity at the intersections of the finite elements, three nodal deflections
at each end of an element will be introduced. The displacements at each nodal point is
assumed to be composed of the axial deformation u, transverse deformation v and rotation
c. The choice of the function Ni (x, l(t)) has a significant effect on the accuracy of the
solution and the size of the problem [9].

In this paper, the Hermite polynomials are selected to represent the functions Ni (x, l(t))
which is the same as in Bahgat and Willmert [7]. The unknown deformations u, v and c

are approximated as follows

8uvc9= &Nu1

0
0

0
Nv1

Nc1

0
Nv2

Nc2

Nu2

0
0

0
Nv3

Nc3

0
Nv4

Nc4'{q}i , (12)

where {q}i =[ui , vi , ci , ui+1, vi+1, ci+1]T is the nodal displacement vector for the ith
element, and Nu1, Nu2, . . . , Nv3, Nv4, . . . , Nc3, Nc4 are the general Hermite polynomials.
Details of the shape functions are given in Appendix A. It should be noted that these shape
functions are time-dependent.

The derivatives of u and v, the curvature k and the shear strain g within the ith element
can be written as

ux =du/dx0 [Bu ]{q}i , k=dc/dx0 [Bb ]{q}i , (13a, b)

vx =dv/dx0 [Bv ]{q}i , g=dv/dx−c0 [Bs ]{q}i , (13c, d)

where

[Bu ]=
d
dx

[Nu ], [Bb ]=
d
dx

[Nc ], [Bv ]=
d
dx

[Nv ], [Bs ]=
d
dx

[Nv ]− [Nc ].

The shape functions are substituted into the kinetic energy Ti of (7) and the strain energy
Ui of (9), and then Ti and Ui can be rewritten in terms of the nodal displacement {q}i as

Ti = 1
2{q̇}T

i [m1]{q̇}i + 1
2{q}T

i [m2]{q}i + {q}T
i [mc ]{q̇}i +[mqt ]{q̇}i +[mq ]{q}i +Z* (14)

Ui = 1
2{q}T

i ([Ku ]+ [Ks ]+ [Kb ]){q}i (15)

where the matrices [m1], [m2], [mc ], [mqt ], [mq ], [Ku ], [Ks ], [Kb ] and Z* are all functions of
l(t). For the details see Appendix A.
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2.3. ’ 

Since there is a moving boundary involved, the element length, mass and stiffness
matrices are time-dependent. Hamilton’s principle is

0= d g
t2

t1

s
Ne

i=1

Li dt (16)

where Ne is the total number of elements of the flexible rod and the Lagrangian function
of each element is Li =Ti −Ui . Performing the variation on the Lagrangian function of
each element, one obtains

0=g
t2

t1
$s

m

i=1

d{q}T
i 0 1Li

1{q}i
−

d
dt

1Li

1{q̇}i1+ s
n

j=1

d{q}T
j 0 1Lj

1{q}j
−

d
dt

1Lj

1{q̇}j1% dt

+$s
m

i=1

d{q}T
i

1Li

1{q̇}i
+ s

n

j=1

d{q}T
j

1Lj

1{q̇}j%
t2

t1

, (17)

where m and n are the element numbers of regions 1 and 2, respectively. The varied path
coincides with the true path at the two timing ends t1 and t2. It follows that
dqi (t1)= dqi (t2)=0 and dqj (t1)= dqj (t2)=0. In differentiating with respect to time, it must
be remembered that the element length is time-dependent. The element matrices, therefore,
are functions of time, and depend on the rigid-body motion of the mechanism as well as
the integrals of the products of the Hermite polynomials.

Since the translating/rotating joint is assumed to be a knife edge, the displacement and
slope are continuous across the joint. Combining regions 1 and 2, the global ordinary
differential equation is obtained as

[M]{Q� }+[C]{Q� }+[K]{Q}= {F} (18)

where

{Q}= {u1, v1, c1, u2, v2, c2, . . . , uNe+1, vNe+1, cNe+1}T,

[M] and [K] are the global mass and stiffness matrices, respectively, [C] is the global
damping term, and {F} is the force term.

The mass, damping, and stiffness matrices in equation (18) are all functions of the
rigid-body motion of the mechanism and therefore the kinematics of the mechanism must
be solved first. Once this is obtained, equation (18) can be used to solve the global
deflection vector Q. The rigid-body motion is of the form

u=Vt+ u0, u� =V, F=sin−10 lc sin u

(l2g + l2c +2lglc cos u)1/21,
F� =

lcu� cos (u−F)
x'1

, (19a–d)

F� =
lglcu� 2(l2c − l2g) sin u

x'41
, x'1 = (l2g + l2c +2lglc cos u)1/2, ẋ'1 =

−lglcu� sin u

x'1
.

(19e–g)

If the slenderness ratio is very small, the shear deformation can be neglected compared
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to the flexural deformations. Euler beam theory can be used to describe the motion of the
flexible rod by setting

c= vx (20)

and neglecting the rotary inertia term rI[(Ft +ct )2 +F2
tc

2]. For the Euler beam theory,
the value f in Appendix A is set equal to zero, that is, take KG:a [10].

The quick-return mechanism in this paper is divided into a large crank problem and a
small crank one. The transient amplitudes of the large crank problem, for example, the
Whitworth crank shaper, are obtained by using the Runge–Kutta numerical method to
integrate equation (18). The steady state responses and the dynamic stability analysis of
the small crank problem, for example, the sewing machine, are to be analyzed in the
following sections.

3. DYNAMIC STABILITY ANALYSIS

Since the frequency of the axial deformation is much larger than that of the practical
operation, the axial deformation is neglected in the dynamic stability analysis and the
equations of transverse deformation become uncoupled. Thus, only the dynamic stability
analysis of the transverse deformation is investigated in this paper. With the small crank
case, the non-dimensional parameter e is defined as

e= lc /lg (21)

where lg is the length of ground link, and lc is the crank length. For a small crank (e�1),
all coefficient matrices of equation (18) can be simplified by applying the binomial
expansion. Now, x'1 , ẋ'1 , F� and F� become functions of u and e:

x'1 = lg (1+ e cos u)+H.O.T., x'1 =−lgeu� sin u+H.O.T., (22a, b)

F� = eu� cos u+H.O.T., F� =−eu� 2 sin u+H.O.T.. (22c, d)

Substituting the above equations (22a–d) into the element matrices in Appendix A,
retaining the terms up to O(e), and assembling all element equations, one obtains the global
equation for the small crank problem as

([MA ]+ e[MB ] cos u){Q� }+ eV[CA ] sin u{Q� }+([KA ]+ e[KB ] cos u){Q}= e[FA ] sin u.

(23)

The detailed expressions of [MA ], [MB ], [CA ], [KA ], [KB ] and [FA ] are given in Lee [11], and
they are all constant matrices. Equation (23) represents a system of the second-order
differential equations with periodic coefficients of the Mathieu–Hill type.

Beale and Scott [4–6] showed that the instability could also arise due to the
inhomogeneous solution. Nevertheless, the parametric stability of the homogeneous
solution of equation (23) will be investigated in this paper. According to the theory
of linear equations with periodic coefficients [12], the boundaries between stable and
unstable regions can be constructed by the periodic solutions with period T and 2T where
T=2p/V.

It was demonstrated [12] that the solutions with period 2T are of the greatest practical
importance for parametric resonance. With a view toward constructing a solution of the
homogeneous part of the system (23) with period 2T, one sets

Q(t)= s
a

k=1,3,5 · · · 0{ak} sin
kVt
2

+ {bk} cos
kVt
2 1. (24)
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By substituting equation (24) into the homogeneous part of equation (23) and equating
the coefficient of the sin kVt/2 and cos kVt/2 terms, a set of linear homogeneous algebraic
equations in terms of {ak} and {bk} is obtained as

{[KA ]− 1
2e[KB ]− [V2/4]([MA ]− [e/2]([MB ]+ [CA ]))}

· {a1}+[e/2]([KB ]− [3V/2][CA ]− [9V2/4][MB ]){a3}=0, (25a)
1
2e{−[(r+2)2V2/4][MB ]− [(r+2)V2/2][CA ]+ [KB ]}{ar+2}

· {−[r2V2/4][MA ]+ [KA ]}{ar}+ 1
2e{−[(r−2)2V2/4][MB]

− [(r−2)2V2/2][CA ]+ [KB ]}{ar−2}= {0}, (r=3, 5, 7, . . . ), (25b)

{[KA ]− 1
2e[KB ]− [V2/4]([MA ]+ [e/2]([MB ]+ [CA ]))}{b1}

+[e/2]([KB ]− [3V/2][CA ]− [9V2/4][MB ]){b3}=0, (25c)
1
2e{−[(r+2)2V2/4][MB ]− [(r+2)V2/2][CA ]+ [KB ]}{br+2}

+ {−[r2V2/4][MA ]+ [KA ]}{br}+ 1
2e{−[(r−2)2V2/4][MB ]

+ [(r−2)V2/2][CA ]+ [KB ]}{br−2}= {0}, (r=3, 5, 7, . . . ). (25d)

The condition for the set of linear homogenous equations (25a–d) to have a non-trivial
solution is used to calculate the boundaries of the stable–unstable region [12]. However,
the method used in this paper fails to capture the combination type instability. The
stable–unstable zones of the combination resonance were determined by Beale and Scott
[4, 5] where Hsu’s method was employed.

4. STEADY-STATE ANALYSIS OF TIME-VARYING SYSTEM

The steady-state responses of the equation (23) with harmonic excitation can be
determined by the harmonic balance method. The periodic solutions with period T can
be expressed in Fourier series as

Q(t)= 1
2{b0}+ s

a

k=2,4,6 · · · 0{ak} sin
kVt
2

+ {bk} cos
kVt
2 1. (26)

Substituting equation (26) into equation (23) and collecting the coefficients in the same
harmonic term, one can obtain a system of the non-homogeneous algebraic equations in
terms of {ak} and {bk} as

([KA ]−V2[MA ]){a2}+ e(1
2[KB ]−V2[CA ]−2V2[MB ]){a4}=[FA ], (27a)

1
2e{−[(r+2)2V2/4][MB ]− [(r+2)V2/2][CA ]+ [KB ]}{ar+2}

· {−[r2V2/4][MA ]+ [KA ]}{ar}+ 1
2e{−[(r−2)2V2/4][MB ]

− [(r−2)2V2/2][CA]+ [KB ]}{ar−2}= {0}, (r=4, 6, 8, . . . ), (27b)
1
2[KA ]{b0}− 1

2(V
2[MB ]−V2[CA ]+ [KB ]){b2}= {0}, (27c)

1
2e[KB ]{b0}+([KA ]−V2[MB ]){b2}+ e(1

2[KB ]−V2[CA ]−2V2[MB ]){b4}= {0}, (27d)
1
2e{−[(r+2)2V2/4][MB ]− [(r+2)V2/2][CC ]+ [KB ]}{br+2}

+ {−[r2V2/4][MA ]+ [KA ]}{br}+ 1
2e{−[(r−2)2V2/4][m2]+ [(r−2)V2/2][CA ]

+ [KB ]}{br−2}= {0}, (r=4, 6, 8, . . . ). (27e)
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T 1

Comparison of the natural frequencies (rad/s).

Present work
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode Exact Two elements Four elements Six elements Beale [4]

First 858·3 861·1 858·4 858·3 904·1
Second 2630·0 3136·5 2646·7 2633·6 3369·0
Third 7255·7 8886·9 7606·5 7395·5 10714·5

The total amplitude of the periodic solution can be written as

Ap = s
r

k=2,4,6 · · ·

({ak}2 + {bk}2)1/2, (28)

where r is chosen large enough such that {ar} and {br} are sufficiently small and negligible.

5. NUMERICAL RESULTS AND DISCUSSIONS

In the large crank problem, the example of a rod has the same material properties and
dimensions as in Beale [4] and Bahagat and Willmert [6]. The example involves the
following dimensions and properties: lc =1·5 in, lg =4·0 in, L=9·3746 in,
r=0·000725 lb in−4 s2, EI=2·91992E6 lbf in2, A=0·4531 in2, K=0·9, G=11 800 lb/in2,
u� =90 rad/s, u(0)=−135°.

This example differs from the small crank in that not only is the rod stiffer, but the
greater stiffness also increases the computation time required to run for 1 cycle of crank
motion. Now, the flexible rod is divided into two, four and six elements, and the natural
frequencies are found and compared with those of Beale [4] approximated by the
polynomial modes. The results are shown in Table 1, where the exact natural frequencies
of the first three modes are the pinned–pinned overhanging beam when the crank does
not rotate. It can be seen that when four elements are taken in the analysis, good accuracy
is obtained.

Using the Runge–Kutta numerical method, one can obtain the transient amplitudes of
the flexible rod modelled by the Timoshenko and Euler beam theories. Figure 4 shows the
computed results with a small amount of the damping being introduced into the equation.
Here the damping term is taken to be 0·002 times the sum of the mass and stiffness
matrices. It is observed that the damping term absorbs the amplitudes of the high
frequency modes.

Owing to the rotary inertia and the shear deformation being taken into account, the
transient deflections obtained by Timoshenko beam theory are larger than those simulated
by the Euler beam theory (Figures 5–7). In these figures, the computation time is 2 cycles
of crank motion.

The other example of the flexible rod has the following dimensions and properties:
L=1 m, lg =0·5997 m, E=0·7E11 N/m2, A=0·0025 m2, I=0·5208E−6 m4,
m̄=7·15 kg/m, K=0·85, G=0·269E11 N/m2, which are the same as the sewing machine
studied by Gurgöze [13]. For the dynamic stability analysis, the stable–unstable regions
of the flexible rod are shown in Figures 8 and 9. The instability zones emanate from the
frequency ratio axis at points where e=0. Figure 8 shows the instability zones for modes
1 and 2, in which the flexible rod is simulated by Euler beam theory and is divided into



.-.   .-. 196

Figure 4. Euler beam tip transverse deflection: - - -, without damping; ——, 0·002 damping.

two, four, and six elements. It is seen that as the number of elements increases, the unstable
region shifts toward the direction of the lower frequency ratio. Figure 9 compares the
stable–unstable regions between the Timoshenko and the Euler beams for the first four
modes. In this figure, four elements are taken in the finite element method. As the shear
deformation and the rotary inertia are considered, the regions of dynamic instability are
shifted closer to each other and the widths of these regions are increased. It is seen that
the regions in the higher modes are greatly affected.

The effect of the non-dimensional crank ratio e on the steady state response is shown
in Figure 10 where e is taken as 0·02, 0·05 and 0·08. Figures 10(a) and (b) show the

Figure 5. The axial displacement at tip end: - - -, Euler beam; ——, Timoshenko beam.
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Figure 6. The transverse displacement at tip end: - - -, Euler beam; ——, Timoshenko beam.

steady-state responses of the Euler beam with linear and logarithmic scales respectively.
From the results shown in Fig. 10(b), it is revealed that the amplification of the
non-homogeneous solution is at speeds vn /N where N is an integer, and the increase in
e is related to the increase in the amplification of the steady-state responses.

6. CONCLUSION

The flexible rod of a high-speed quick-return mechanism has been modelled by the
Timoshenko and Euler beam theories. The finite element method and Hamilton’s principle
were employed to derive the governing equations. Since the element length is

Figure 7. The rotation displacement at the Timoshenko-beam tip.
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Figure 8. Euler beam instability zones for modes 1 and 2: - - -, 2 elements; ——, 4 elements; –·–·, 6 elements.

time-dependent, the governing equation has time-varying coefficients. In the large crank
problem, the transient amplitudes were obtained and compared between the Timoshenko
and Euler beam theories. In the small crank problem, the steady state response and
dynamic stability of the flexible rod are analyzed. From the results of transient amplitude,
steady-state response and dynamic stability, the following conclusions are drawn:

(1) The transient amplitudes of the flexible rod modelled by the Timoshenko beam
theory are larger than those modelled by the Euler beam theory. For the small crank case,
all the results are periodic.

(2) As the number of elements increases in the analysis, the unstable region shifts
towards the direction of the lower frequency ratio. Due to the shear deformation and the

Figure 9. Instability zones for the first 4 modes with 4 elements: - - -, Euler beam; ——, Timoshenko beam.
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Figure 10. Euler beam steady-state response: (a) V/v1 versus Ap; (b) V/v1 versus log (AP). e=: –·–·, 0·02;
——,0·05; - - -, 0·08.

rotary inertia being considered, the regions of dynamic instability are broadened and are
shifted closer to each other.

(3) As the crank length ratio increases, the steady-state response and the amplification
of the non-homogeneous solution increase.
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APPENDIX A

Shape functions of equation (12) are

Nu1 =1−
x

l(t)
, Nu2 =

x
l(t)

, Nv1 =
[l(t)3 −3x2l(t)+2x3 + (l(t)3 − xl(t)2)f]

l(t)3(1+f)
,

Nv2 =
[(xl(t)2 −2x2l(t)+ x3 + (xl(t)2 − x2l(t))f/2]

l(t)2(1+f)
, Nv3 =

(3x2l(t)−2x3 + xl(t)2f)
l(t)3(1+f)

,

Nv4 =
[−x2l(t)+ x3 − (xl(t)2 − x2l(t))f/2]

l(t)2(1+f)
, Nc1 =

6(−xl(t)+ x2)
[l(t)3(1+f)]

,

Nc2 =
[l(t)2 −4xl(t)+3x2 + (l(t)2 − xl(t))f]

l(t2)(1+f)
, Nc3 =

6(xl(t)− x2)
[l(t)3(1+f)]

,

Nc4 =
(−2xl(t)+3x2 + xl(t)f)

l(t)2(1+f)
, f=

12EI
KGAl(t)2

Coefficient matrices of equations (14) and (15) are

[m1]= rA g
l(t)

0

{[Nu ]T[Nu ]+ [Nv ]T[Nv ]} dx+ rI g
l(t)

0

[Nc ]T[Nc ] dx

[m2]= rA g
l(t)

0

{[N� u ]T[N� u ]+ [N� v ]T[N� v ]} dx+ rAFt g
l(t)

0

{[Nu ]T[N� v ]+ [N� v ]T[Nu ]

− [N� u ]T[Nv ]− [Nv ]T[N� u ]} dx+ rAF2
t g

l(t)

0

{[Nu ]T[Nu ]+ [Nv ]T[Nv ]} dx

+ rIF2
t g

l(t)

0

[Nc ]T[Nc ] dx+g
l(t)

0

[N� c ]T[N� c ] dx

[mc ]= rA0Ft g
l(t)

0

{[Nu ]T[Nv ]− [Nv ]T[Nu ]} dx+g
l(t)

0

{[N� u ]T[Nu ]+ [N� v ]T[Nv ]} dx1
+ rI g

l(t)

0

[N� c ]T[Nc ] dx

[mqt ]= rA g
l(t)

0

{Ft (Ri + x)[Nv ]T +Ri
t[Nu ]T} dx

[mq ]= rA g
l(t)

0

{Ft (Ri + x)(Ft [Nu ]T + [N� v ]T)+Ri
t([N� u ]T −Ft [Nv ]T)} dx
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Z*= 1
2rA g

l(t)

0

[F2
t (Ri + x)2 + (Ri

t)2] dx

[Ku ]=EA g
l(t)

0

[Bu ]T[Bu ] dx, [Kb ]=EI g
l(t)

0

[Bb ]T[Bb ] dx

[Ks ]=KGA g
l(t)

0

[Bs ]T[Bs ] dx

APPENDIX B: NOMENCLATURE

A cross-sectional area of the flexible rod
ei, ej unit vectors in the x' and y' directions, respectively
E modulus of elasticity
G shear modulus of elasticity
i, j unit vectors in the X and Y directions, respectively
I area moment of inertia about neutral axis
K shape factor
L length of the flexible rod
l(t) element length
lc crank length
lg length of the ground link
Mc mass of the crank
OXY global co-ordinate system
o'xy element co-ordinate system
R position vector of point P related to OXY co-ordinate system
Ri position vector of point o' related to OXY co-ordinate system
x'1 (t) current position of the translating/rotating joint
t time
u(x, t), v(x, t) longitudinal and transverse displacements, respectively
w(x, t) any unknown deformation
e dimensionless crank length parameter
u angle of the crank
r mass density
F angle of the undeformed axis of the flexible rod
c rotation angle of the flexible rod
V angular velocity of the crank


